TC4 Titanium Alloy Fatigue Property at High Temperature and High-Low Temperature Field

NIE Kai, WANG Yongjun

Equipment Environmental Engineering ›› 2024, Vol. 21 ›› Issue (6) : 68-77.

PDF(6568 KB)
PDF(6568 KB)
Equipment Environmental Engineering ›› 2024, Vol. 21 ›› Issue (6) : 68-77. DOI: 10.7643/ issn.1672-9242.2024.06.010
Aviation and Aerospace Equipment

TC4 Titanium Alloy Fatigue Property at High Temperature and High-Low Temperature Field

  • NIE Kai, WANG Yongjun
Author information +
History +

Abstract

The work aims to study fatigue property of TC4 titanium alloy at high temperature and high-low temperature field (25~390 ℃). The difference of fatigue property at two different conditions and the mechanism of temperature effect were studied by high temperature fatigue test, the high-low temperature fatigue test and fractographic analysis. As temperature rose from 25 ℃ to 390 ℃, the fatigue property of TC4 titanium alloy was reduced in the short life regime (N<106 cycles). The fatigue property showed nonlinear variation tendency in the long life regime (N>106 cycles). The fatigue property was enhanced firstly and then showed a degradation tendency. It was observed that oxidation became more and more obvious with the increase of temperature and for the longer test duration as shown in fractographic analysis. At the same stress level, the fatigue life of the high-low temperature fatigue test was longer than that at the highest temperature, and shorter than that at the lowest temperature. When the environment temperature is between 25 ℃ and 390 ℃, the fatigue property of TC4 titanium is affected by both temperature and oxidation at the same time. The fatigue property is degraded with the increase of temperature. On the other hand, the protective oxidation film formed in the high temperature environment can improve fatigue property. The fatigue life at the high-low temperature field can be predicted by a stress-life curve at equivalent temperature. The model has a good predictive precision.

Key words

high temperature / high-low temperature / TC4 / titanium alloy / fatigue property / oxidation

Cite this article

Download Citations
NIE Kai, WANG Yongjun. TC4 Titanium Alloy Fatigue Property at High Temperature and High-Low Temperature Field[J]. Equipment Environmental Engineering. 2024, 21(6): 68-77 https://doi.org/10.7643/ issn.1672-9242.2024.06.010

References

[1] 杨健. 钛合金在飞机上的应用[J]. 航空制造技术, 2006, 49(11): 41-43.
YANG J.Application of Titanium Alloy in Aircraft[J]. Aeronautical Manufacturing Technology, 2006, 49(11): 41-43.
[2] 赵树萍, 吕双坤. 钛合金在航空航天领域中的应用[J]. 钛工业进展, 2002, 19(6): 18-21.
ZHAO S P, LYU S K.Application of Titanium Alloy in Aerospace Field[J]. Titanium Industry Progress, 2002, 19(6): 18-21.
[3] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1): 280-282.
LI Y, ZHAO Y Q, ZENG W D.Application and Development Trend of Aviation Titanium Alloy[J]. Materials Reports, 2020, 34(S1): 280-282.
[4] 黄天娥, 范桂彬, 闫海, 等. 航空用钛合金材料及钛合金标准发展综述[J]. 航空标准化与质量, 2010(3): 30-33.
HUANG T E, FAN G B, YAN H, et al.Summary of Titanium Alloy Materials and Titanium Alloy Standards for Aviation[J]. Aeronautic Standardization & Quality, 2010(3): 30-33.
[5] 黄张洪, 曲恒磊, 邓超, 等. 航空用钛及钛合金的发展及应用[J]. 材料导报, 2011, 25(1): 102-107.
HUANG Z H, QU H L, DENG C, et al.Development and Application of Aerial Titanium and Its Alloys[J]. Materials Review, 2011, 25(1): 102-107.
[6] 徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022(16): 96-99.
XU Q B, LIU S Y.Grades of Titanium and Titanium Alloys Developed in Western Countries and Their Applications in the Aerospace Industry[J]. World Nonferrous Metals, 2022(16): 96-99.
[7] 李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术-下[M]. 北京: 国防工业出版社, 2012.
LI J R, XIONG J C, TANG D Z.Advanced High Temperature Structural Materials and Technology[M]. Beijing: National Defense Industry Press, 2012.
[8] 吴宏鑫, 孟斌. 高超声速飞行器控制研究综述[J]. 力学进展, 2009, 39(6): 756-765.
WU H X, MENG B.Review on the Control of Hypersonic Flight Vehicles[J]. Advances in Mechanics, 2009, 39(6): 756-765.
[9] 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10): 1129-1134.
WANG J, WANG P G.Integrated Thermal Protection and Control System Design Methodology for Hypersonic Vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1129-1134.
[10] KOHOUT J.Temperature Dependence of Stress-Lifetime Fatigue Curves[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(12): 969-977.
[11] SCHIJVE J.Fatigue of Structures and Materials[M]. New York: Kluwer Academic Publishers, 2004.
[12] 绍磊. 航空领域用典型钛合金的燃烧行为与机理研究[D]. 北京: 北京科技大学, 2022.
SHAO L.Combustion Behavior and Mechanism of typical Titanium Alloys for Aircraft[D]. Beijing: University of Science and Technology Beijing, 2022.
[13] 周海彬, 熊茹, 刘桂良, 等. Ti-4Al-2V钛合金高温高周疲劳性能研究[J]. 核动力工程, 2012, 33(5): 124-128.
ZHOU H B, XIONG R, LIU G L, et al.Fatigue Behavior of Titanium Alloy Ti-4Al-2V under High Cycle Loading at Elevated Temperature[J]. Nuclear Power Engineering, 2012, 33(5): 124-128.
[14] TOKAJI K.High Cycle Fatigue Behaviour of Ti-6Al-4V Alloy at Elevated Temperatures[J]. Scripta Materialia, 2006, 54(12): 2143-2148.
[15] ZHAO Z, ZHOU R, WANG Z, et al.High Temperature Fatigue Behavior of a Near-Alpha Titanium Alloy[J]. International Journal of Fatigue, 2022, 161: 106918.
[16] VIESPOLI L M, BRESSAN S, ITOH T, et al.Creep and High Temperature Fatigue Performance of as Build Selective Laser Melted Ti-Based 6Al-4V Titanium Alloy[J]. Engineering Failure Analysis, 2020, 111: 104477.
[17] 吕志阳, 熊峻江, 赵延广, 等. Ti-6Al-4V/ELI钛合金250℃裂纹扩展性能[J]. 航空材料学报, 2018, 38(4): 123-129.
LYU Z Y, XIONG J J, ZHAO Y G, et al.Experimental Investigation of High-Temperature Crack Propagation Behaviors for Ti-6Al-4V/ELI at 250 ℃[J]. Journal of Aeronautical Materials, 2018, 38(4): 123-129.
[18] 陶佳跃, 周亚东, 张培伟, 等. 钛合金高温疲劳性能的试验研究[J]. 工程力学, 2016, 33(4): 250-256.
TAO J Y, ZHOU Y D, ZHANG P W, et al.Experimental Study on High Temperature Fatigue Properties of Titanium Alloys[J]. Engineering Mechanics, 2016, 33(4): 250-256.
[19] 张源, 张爱荔, 李惠娟. TC4钛合金的表面氧化及其对疲劳性能的影响[J]. 钛工业进展, 2010, 27(1): 25-27.
ZHANG Y, ZHANG A L, LI H J.Surface Oxidation and Its Effect on the Fatigue Property of TC4 Alloy[J]. Titanium Industry Progress, 2010, 27(1): 25-27.
[20] 宋冬行. 氧化层对10%Cr耐热钢蠕变疲劳寿命的影响[D]. 西安: 西安石油大学, 2018.
SONG D X.Effect of Oxide Layer on Creep Fatigue Life of 10%Cr Heat Resistant Steel[D]. Xi'an: Xi'an Shiyou University, 2018.
[21] OMIDBAKHSH F, EBRHIMI A R, ZAREI F.The Effect of High Temperature Oxidation on the Fatigue Fracture Mechanism of Ti-4Al-2V Alloy[C]//Proceeding of the 12th World Conference on Titanium. Beijing:[s. n.], 2011.
[22] 国家国防科技工业局. 金属材料高温轴向高周疲劳试验方法: HB 20449—2018[S]. 北京: 中国航空综合技术研究所, 2018.
State Administration of Science, Technology and Industry for National Defense. Axil High Cycle Fatigue Testing Method of Metallic Materials at Elevated Temperature: HB 20449—2018[S]. Beijing: Aviation Comprehensive Technology Research Institute of China, 2018.
[23] 中国航空工业总公司. 金属材料轴向加载疲劳试验方法: HB 5287—96[S]. 北京: 中国航空综合技术研究所, 1996.
Aviation Industry Corporation of China, Ltd. Axial Loading Fatigue Testing of Metallic Material: HB 5287— 96[S]. Beijing: Aviation Comprehensive Technology Research Institute of China, 1996.
[24] 高镇同. 疲劳性能试验设计和数据处理: 直升机金属材料疲劳性能可靠性手册[M]. 北京: 北京航空航天大学出版社, 1999.
GAO Z T.Fatigue Performance Test Design and Data Processing: Reliability Manual for Fatigue Performance of Helicopter Metal Materials[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1999.
[25] 中华人民共和国航空工业部. 材料疲劳试验统计分析方法: HB/Z 112—86[S]. 北京: 中国航空综合技术研究所, 1987
Ministry of Aviation Industry of the People's Republic of China. Statistical Analysis of Material Fatigue Testing: HB/Z 112—86[S]. Beijing: Aviation Comprehensive Technology Research Institute of China, 1987.
[26] 中央军委装备发展部. 金属材料力学性能数据处理与表达: GJB/Z 18A—2020[S]. 北京: 国家军用标准出版发行部, 2021.
Equipment Development Department of the Central Military Commission. Data Reduction and Presentation of Mechanical Property for Metallic Materials: GJB/Z 18A—2020[S]. Beijing: Standard Press of National Military, 2021.
[27] 隋欣梦, 胡记, 张林, 等. 钛合金表面抗高温氧化涂层的研究进展[J]. 表面技术, 2020, 49(10): 21-38.
SUI X M, HU J, ZHANG L, et al.Research Progress of High Temperature Oxidation Resistance Coating on Titanium Alloy[J]. Surface Technology, 2020, 49(10): 21-38.
[28] 颜鸣皋. 中国航空材料手册[M]. 第二版. 北京: 中国标准出版社, 2002.
YAN M G.China Aeronautical Material Handbook[M]. The Second Edition. Beijing: Standards Press of China, 2002.
[29] LI G, SUN C Q.High-Temperature Failure Mechanism and Defect Sensitivity of TC17 Titanium Alloy in High Cycle Fatigue[J]. Journal of Materials Science & Technology, 2022, 122: 128-140.
[30] 曾尚武, 江海涛, 赵爱民. TC4钛合金高温氧化行为[J]. 稀有金属材料与工程, 2015, 44(11): 2812-2816.
ZENG S W, JIANG H T, ZHAO A M.High Temperature Oxidation Behavior of TC4 Alloy[J]. Rare Metal Materials and Engineering, 2015, 44(11): 2812-2816.
[31] NAGODE M.An Online Algorithm for Temperature Influenced Fatigue-Life Estimation: Strain-Life Approach[J]. International Journal of Fatigue, 2004, 26(2): 155-161.
[32] NAGODE M.An Online Algorithm for Temperature Influenced Fatigue Life Estimation: Stress-Life Approach[J]. International Journal of Fatigue, 2004, 26(2): 163-171.
[33] 平修二. 热应力与热疲劳: 基础理论与设计应用[M]. 北京: 国防工业出版社, 1984.
HEISUJI. Thermal Stress and Thermal Fatigue: Fundamental and Application[M]. Beijing: National Defense Industry Press, 1984.
[34] 史展飞, 李玉龙, 索涛, 等. 载荷频率对金属及其合金高周疲劳特性的影响[J]. 材料科学与工程学报, 2009, 27(3): 488-492.
SHI Z F, LI Y L, SUO T, et al.Influence of Loading Frequency on the High Cycle Fatigue Properties of Metallic and Alloy[J]. Journal of Materials Science and Engineering, 2009, 27(3): 488-492.

Funding

Pre-research project of the 14th Five-Year Plan (403010302)
PDF(6568 KB)

Accesses

Citation

Detail

Sections
Recommended

/